国际学生入学条件
A. A bachelor's degree in chemistry earned in a curriculum approved by the American Chemical Society, or an equivalent course of study.
B. A minimum grade point average of 3.00 (B) in all undergraduate work and 3.00 (B) in all courses in the sciences and mathematics.
C. Results of the Graduate Record Examination (GRE) General Test.
D. Acceptance by the Department of Chemistry and by the Graduate School.
In exceptional cases, a student not meeting requirements A and B may be admitted on a provisional basis.
An applicant must have a minimum cumulative grade point average of 3.00 on a 4.00 point scale.
IELTS: Overall score of 6.5, with no subsection recommended to be below 6
TOEFL: 90 for admission to a doctoral program
展开 IDP—雅思考试联合主办方
雅思考试总分
6.5
了解更多
雅思考试指南
- 雅思总分:6.5
- 托福网考总分:90
- 托福笔试总分:160
- 其他语言考试:Duolingo - 110
CRICOS代码:
申请截止日期: 请与IDP顾问联系以获取详细信息。
课程简介
化学系的磁共振范围从生理学到化学物理学。正在研究的主题包括使用液态和固态核磁共振(NMR)光谱技术以及具有稳定自旋1/2和四极核素的微成像技术来研究无机,有机,生物和生物系统。正在进行的项目采用了一系列的一维和N维NMR光谱技术以及新颖的成像技术,以阐明化学过程并确定溶液中生物和有机分子的结构。正在开发新的NMR方法,以测定存在于无序固体中的微分子和大分子的结构,并研究处于液晶状态的分子和被固体表面吸收的分子的结构和动力学。正在开发脉冲电子顺磁共振(EPR)技术来研究金属酶,有机导体和其他分子。
The Department of Chemistry, within the College of Arts and Sciences, offers courses of study leading to the degrees of Master of Arts in Teaching Chemistry, Master of Science, and Doctor of Philosophy. Students in the M.A.T. program must register through the School of Professional Development. A student in the Ph.D. program may choose dissertation research in any one of the diverse areas of chemistry represented by the interests of the program faculty, or may choose an interdisciplinary topic under the guidance of a faculty member in another program. Coordinated activities exist with several programs, and include optional concentrations in chemical physics and chemical biology. <br><br>Magnetic resonance in the Chemistry Department ranges from studies in physiology to studies in chemical physics. Topics under investigation include the use of liquid and solid state nuclear magnetic resonance (NMR) spectroscopy and micro-imaging techniques with stable spin 1/2 and quadrupolar nuclides to study inorganic, organic, biological, and living systems. Projects in progress employ a range of single and N-dimensional NMR spectroscopic techniques and novel imaging techniques to elucidate chemical processes and determine the structures of biological and organic molecules in solution. Novel NMR methods are being developed for the determination of the structures of micro- and macromolecules as they exist in disordered solids and to study the structure and dynamics of molecules in the liquid crystalline state and those absorbed on solid surfaces. Pulsed electron paramagnetic resonance (EPR) techniques are being developed to study metalloenzymes, organic conductors, and other molecules.
展开