国际学生入学条件
Most entering students have completed an undergraduate program in physics, including such courses as analytical mechanics, electricity and magnetism, optics and wave motion, electronics, and atomic physics, some advanced undergraduate laboratory work in physics is also expected. Knowledge of linear algebra, differential equations, and vector calculus is essential. Additional study in mathematics is desirable. The quality of undergraduate work and promise for graduate work are weighted more heavily than the extent of undergraduate study in physics and related subjects. Some entering students enroll in one or more undergraduate courses to make up deficiencies.
Minimum IBT TOEFL scores required for consideration are: OVERALL 78
Writing: 20
Listening: 15
Reading: 20
Speaking: 23
The Graduate School requires an overall band score of a 7.0 or higher on the IELTS.The Physics Department requires a minimum speaking subscore of 7.0.
GRE general test
The GRE general test and the GRE Physics subject test are not required for the 2021 admissions cycle.
展开 IDP—雅思考试联合主办方
雅思考试总分
7.0
了解更多
雅思考试指南
- 雅思总分:7
- 托福网考总分:78
- 托福笔试总分:160
- 其他语言考试:NA
CRICOS代码:
申请截止日期: 请与IDP顾问联系以获取详细信息。
课程简介
Condensed-matter physics concerns atoms in close proximity to one another and interacting strongly, as in the liquid and solid states. Collective and cooperative phenomena that result from these interactions can produce a variety of unusual physical properties as represented by the superfluid phases of 3He or high-temperature superconductivity. Research areas of particular strength at Cornell include nanostructure physics, correlated quantum materials, low-temperature physics, x-ray physics and soft condensed matter physics.<br>Nanostructure physics was pioneered at Cornell, and we remain the leader in this field because of a unique and continually updated collection of advanced tools at the Cornell NanoScale Science & Technology Facility (CNF). Physicists at Cornell developed many ''top-down'' lithography techniques, now capable of building structures on scales less than 10 nm, as well as ''bottom-up'' guided-assembly techniques for incorporating nanometer-scale objects into functional devices. Current work involves understanding the effects of quantum mechanics on electron transport in carbon nanotubes, graphene and individual organic molecules. Nanometer-scale magnetic devices are an area of emphasis, with applications for using spin-polarized currents to control ultra-dense magnetic memories. The dynamics of high-quality mechanical oscillators made of silicon, silicon nitride, carbon nanotubes and graphene are approaching quantum-mechanical limits and can act as extremely sensitive force sensors in a wide variety of experiments. The department is heavily invested in continuing to invent new tools to further understanding, including entirely new forms of scanning-probe microscopy for use in characterizing phenomena on the nanometer scale.
展开