国际学生入学条件
All official Transcripts. A bachelor’s degree or its foreign equivalent from an accredited college or university. Official transcripts of your grades.
Three letters of recommendation. Applicants are required to upload a transcript (may be unofficial at this time) including the key from all attended colleges or universities.
The transcript must show the name of the student, name of the issuing institution, name of courses taken, and the grades received in those courses.
The Graduate School does not have a minimum TOEFL or IELTS score requirement. If you are offered admission and accept our offer and have scored below a 27 on the Speaking sub-section of the TOEFL iBT or below an 8.0 on the Speaking sub-section of the IELTS you will be required to take an English placement test at the start of the fall term. Students who do not pass the test will be required to enroll in English Language Program classes.
GRE:
General Test - not accepted
Additional departmental requirements
Please briefly describe how your academic interests, background, or life experiences would promote Princeton’s commitment to diversity and inclusion within the Graduate School and to training individuals in an increasingly diverse society. Please submit a succinct statement of no more than 250 words.
M.S.E. and M.Eng. applicants typically have support from their employers or from external fellowships.
展开
IDP—雅思考试联合主办方

雅思考试总分
6.0
了解更多
雅思考试指南
- 雅思总分:6
- 托福网考总分:60
- 托福笔试总分:160
- 其他语言考试:NA
CRICOS代码:
申请截止日期: 请与IDP顾问联系以获取详细信息。
课程简介
Biomolecules, including DNA, RNA, proteins, peptides and the constellation of small molecules made by cells, are the molecules that fuel life. Biomolecular engineering is the analysis and engineering of these living systems. Our research uses techniques from synthetic biology, organic chemistry, biochemistry, chemical engineering, and cell biology to quantify and manipulate the three-dimensional structure and function of molecules and macromolecular assemblies for potential medical applications.<br>Synthetic biology includes the development of biosensors or genetic circuits to assist in the design and optimization of metabolically engineered strains. An important tool in this area recognized by the 2019 Nobel Prize in Chemistry, awarded to Princeton Engineering alumna Frances Arnold is directed evolution, which involves the generation of large libraries of protein mutants at the genetic level followed by screening or selection of functional variants. Computational efforts in this area help illuminate the structure and conformations of biomolecules over a range of physiological environments, including unusual environments like subfreezing temperatures or solutions with high concentrations of denaturants.
展开