国际学生入学条件
All official Transcripts. A bachelor’s degree or its foreign equivalent from an accredited college or university. Official transcripts of your grades.
Three letters of recommendation. Applicants are required to upload a transcript (may be unofficial at this time) including the key from all attended colleges or universities.
The transcript must show the name of the student, name of the issuing institution, name of courses taken, and the grades received in those courses.
The Graduate School does not have a minimum TOEFL or IELTS score requirement. If you are offered admission and accept our offer and have scored below a 27 on the Speaking sub-section of the TOEFL iBT or below an 8.0 on the Speaking sub-section of the IELTS you will be required to take an English placement test at the start of the fall term. Students who do not pass the test will be required to enroll in English Language Program classes.
GRE :
General Test optional/not required; Physics Subject Test optional/not required
展开
IDP—雅思考试联合主办方

雅思考试总分
6.0
了解更多
雅思考试指南
- 雅思总分:6
- 托福网考总分:60
- 托福笔试总分:160
- 其他语言考试:NA
CRICOS代码:
申请截止日期: 请与IDP顾问联系以获取详细信息。
课程简介
Stellar astronomy and astrophysics have a long tradition at Princeton, inaugurated by the pioneering work of Martin Schwarzschild and Bohdan Paczynski in the early years of detailed stellar modeling. The Department maintains this tradition and conducts cutting-edge research across a broad spectrum of modern topics. These include supernova theory (Burrows), compact objects, such as neutron stars, pulsars, magnetars, and black holes (Burrows, Goodman, Quataert, Spitkovsky), star formation (Draine, Kunz, Ostriker, Stone), massive-star evolution, asteroseismology, and stellar mass loss (Quataert), the stellar IMF (Ostriker), gamma-ray bursters (Goodman, Spitkovsky), X-ray bursters (Spitkovsky), brown dwarfs (Burrows, Knapp), white dwarfs (Knapp, Quataert), and astrophysical disks (Draine, Goodman, Kunz, Spitkovsky, Stone). Observational programs employ the Subaru, Apache-Point, MMT, Hubble, JWST, Spitzer, Chandra, and Magellan telescopes and data, and make extensive use of the Sloan Digital Sky Survey (SDSS), which Princeton astronomers conceived and developed, and of the Vera Rubin Observatory/LSST. Theoretical projects involve simulations of disk, atmosphere, magnetospheric, plasma, and explosive phenomena, using state-of-the-art computational and modeling tools, detailed physical models, and high-performance computers. Many of the numerical simulations are performed on the Princeton supercomputer clusters of the Princeton Institute for Computational Science and Engineering (PICSciE) and at NSF and DOE National supercomputer centers.
展开